

BOSSONG S.p.A. Via Enrico Fermi, 51 (Z.1.2) - 24050 GRASSOBBIO (Bergamo) Italy Tel +39 035 3846 011 - Fax +39 035 3846 012 - www.bossong.com - info@bossong.com

FASTENING SYSTEMS SYSTEMES DE FIXATION BEFESTIGUNGSSYSTEME SISTEMAS DE FIJACIÓN

CE

LEISTUNGSERKLÄRUNG Gemäß Bauproduktenverordnung Nr. 305/2011

DoP Nr. 09/0140

1. Eindeutiger Identifikationscode des Produkttyps:

BCR V PLUS / BCR V PLUS-W / BCR V PLUS-T

2. Typ, Charge, Seriennummer oder jedes andere Element zur Identifizierung des Bauprodukts gemäß Artikel 11 Absatz 4:

BCR + Gehalt in ml + V PLUS. Beispiel BCR 400 V PLUS

3. Vom Hersteller vorgesehener Verwendungszweck bzw. vorgesehene Verwendungszwecke des Bauprodukts gemäß der einschlägigen harmonisierten technischen Spezifikation:

Verwendungszwe	ck	Chemischer /	Anker zur Verai	nkerung von G	ewindestangen				
Maßnahmen		M8	M10	M12	M16	M20	M24	M27	M30
haf from 1	Mindest	60	70	80	100	120	145	145	145
hef [mm]	max	160	200	240	320	400	480	540	600

Verwendungszwe	ck	Chemische	Chemischer Anker zur Verankerung von Stäben mit verbesserter Haftung								
Maßnahmen		Ø8	Ø8 Ø10 Ø12 Ø14 Ø16 Ø20 Ø25 Ø28 Ø							Ø32	
hef [mm]	Mindest	60	70	80	80	100	120	150	180	200	
nei [mm]	max	160	200	240	280	320	400	500	560	640	

Unterstützungstyp und Widerstand	Bewehrter oder unbewehrter Beton mit normalem Gewicht, Widerstandsklasse von mindestens C20/25 bis höchstens C50/60 gemäß EN 206-1.
Zustand des Grundmaterials	Ungerissen von M8 bis M30 und von Ø8 bis Ø32, gerissen von M10 bis M20. Seismische Kategorie C1 von M12 bis M20 und seismische Kategorie C2 für M12 und M16.
Metallisches Material des Ankers und damit verbundene Umgebungsbedingungen	Gewindestangen: X1) Konstruktionen, die trockenen Innenbedingungen ausgesetzt sind: Elemente aus verzinktem Stahl (verzinkt oder feuerverzinkt) und Edelstahl A2, A4 oder hochkorrosionsbeständigem Stahl (HCR). X2) Strukturen, die äußerer atmosphärischer Einwirkung (einschließlich Industrie- und Meeresumgebung) und dauerhaft feuchten Innenbedingungen ausgesetzt sind, sofern keine besonders aggressiven Bedingungen vorliegen: Elemente aus Edelstahl A4 oder hochbeständigem Stahl (HCR). X3) Bauwerke, die äußeren atmosphärischen Einflüssen (einschließlich Industrie- und Meeresumgebungen) und dauerhaft feuchten Innenbedingungen ausgesetzt sind, sofern andere besonders aggressive Bedingungen vorliegen. Solche besonders aggressiven Bedingungen sind z.B. Ständiges, abwechselndes Eintauchen in Meerwasser oder in die Sprühzone des Meerwassers, Chloridatmosphäre von Schwimmbädern oder Innenräumen mit chemischer Verschmutzung (z. B. in Entschwefelungsanlagen oder Straßentunneln, in denen Anti-Eis-Materialien verwendet werden): Elemente aus korrosionsbeständigem Stahl (HCR) Stäbe mit verbesserter Haftungsklasse B oder C gemäß EN 1992-1-1

www.bossong.com

Art der Ladung	Statische Belastung, quasistatische und seismische Belastungskategorie C1 und C2. Feuerresistent. 100 Jahre Lebensdauer
Betriebstemperaturen	 a) von -40°C bis +40°C (max. Kurzzeittemperatur +40°C und max. Langzeit-Dauertemperatur +24°C). b) von -40°C bis +80°C (max. Kurzzeittemperatur +80°C und max. Langzeit-Dauertemperatur +50°C). c) von -40°C bis +120°C (max. Kurzzeittemperatur +120°C und max. Langzeit-Dauertemperatur +72°C).
Nutzungskategorie	Kategorie I1 und I2: trockener, nasser Beton und überflutetes Loch. Überkopfmontage zulässig. Bohren mit handelsüblicher Bohrmaschine oder mit Vakuumbohrern.

4. Name, eingetragener Handelsname oder eingetragenes Warenzeichen und Anschrift des Herstellers gemäß Artikel 11 Absatz 5:

Bossong SpA – via Enrico Fermi 49/51 – 24050 Grassobbio (Bg) – Italien – www.bossong.com

5. Gegebenenfalls Name und Anschrift des Bevollmächtigten, dessen Mandat die in Artikel 12 Absatz 2 genannten Aufgaben umfasst:

Unzutreffend

6. System oder Systeme zur Bewertung und Überprüfung der Leistungsbeständigkeit des in Anhang V genannten Bauprodukts: System 1

7. Im Falle einer Leistungserklärung, die sich auf ein Bauprodukt bezieht, das in den Geltungsbereich einer harmonisierten Norm fällt:

Unzutreffend

8. Im Falle einer Leistungserklärung, die sich auf ein Bauprodukt bezieht, für das eine europäische technische Bewertung ausgestellt wurde:

ITB hat ETA-09/0140 basierend auf EAD 330499-02-0601 ausgestellt

ITB (Nr. 1488) durchgeführt:

Bestimmung des Produkttyps anhand von Typprüfungen (einschließlich Probenahmen), Typberechnungen, Werten aus Tabellen oder beschreibenden Dokumentationen des Produkts; Erstinspektion der Produktionsanlage und werkseigene Produktionskontrolle; kontinuierliche Überwachung, Bewertung und Überprüfung der werkseigenen Produktionskontrolle, mit Bescheinigungssystem 1 und hat das Konformitätszertifikat Nr. 1488-CPR-0119/W ausgestellt.

9. Erklärte Leistung:

UNERLÄSSLICHE EIGENSCHAFTEN	LEISTU	NG GEMÄ	SS ETA-09	9/0140				
Installationsparameter	M8	M10	M12	M16	M20	M24	M27	M30
d [mm]	8	10	12	16	20	22-24	27	30
d ₀ [mm]	10	12	14	18	24	28	30	35
d fix [mm]	9	12	14	18	22	26	30	33
h 1 [mm]				•	5 mm			
h _{min} [mm]			MAX { h ef	+ 30 mm; ≥	≥ 100 mm;	$h_{ef} + 2d_0$	}	
T _{Fix} [Nm]	10	20	40	80	130	200	250	280
S _{min} [mm]	40	50	60	75	90	115	120	140
C min [mm]	35	40	45	50	55	60	75	80
γ _{Inst} [-] Kategorie I1		1,00						
γ _{Inst} [-] Kategorie I2				1.	20			
Widerstand bei Zugbelastung Charakteristischer Widerstand auf der Stahlseite	М8	M10	M12	M16	M20	M24	M27	M30
Stahlklasse 4,8 N _{Rk,s} [kN]	15	23	34	63	98	141	183	224
Stahlklasse 5,8 N Rk,s [kN]	18	29	42	78	122	176	229	280
Stahlklasse 8,8 N Rk,s [kN]	29	46	67	126	196	282	367	449
Stahlklasse 10,9 N Rk,s [kN]	37	58	84	157	245	353	459	561
Edelstahl A2, A4, HCR-Klasse 50 N Rk,s [kN]	18	29	42	78	122	176	229	280
Edelstahl A2, A4, HCR-Klasse 70 N Rk,s [kN]	26	41	59	110	171	247	321	392
Edelstahl A4, HCR-Klasse 80 N Rks [kN]	29	46	67	126	196	282	367	449

UNERLÄSSLICHE EIGENSCHAFTEN	LEISTU	NG GEMÄ	SS ETA-0	9/0140				
Widerstand für Scherlasten Charakteristischer Widerstand auf der Stahlseite ohne	M8	M10	M12	M16	M20	M24	M27	M30
Hebelarm Stahiklasse 4,8 V ⁰ _{Rk,s} [kN]	7	12	17	31	49	71	92	112
Stahlklasse 5,8 V ° Rks [kN]	9	14	21	39	61	88	115	140
Stahlklasse 8,8 V ⁰ _{Rks} [kN]	15	23	34	63	98	141	184	224
Stahlklasse 10,9 V O _{Rks} [kN]	18	29	42	78	122	176	230	280
Edelstahl A2, A4, HCR -Klasse 50 V O Rks [kN]	9	14	21	39	61	88	115	140
Edelstahl A2, A4, HCR -Klasse 70 V ⁰ _{Rk,s} [kN]	13	20	29	55	86	124	160	196
Edelstahl A4, HCR- Klasse 80 V ° Rks [kN]	15	23	34	63	98	141	184	224
k ₇	10		0.	1	,0		101	
Widerstand für Scherlasten Widerstand auf der Stahlseite mit Hebelarm	M8	M10	M12	M16	M20	M24	M27	M30
Stahlklasse 4,8 M ⁰ _{Rk,s} [Nm]	15	30	52	133	260	449	666	900
Stahlklasse 5,8 M ⁰ _{Rk,s} [Nm]	19	37	66	166	324	561	832	1125
Stahlklasse 8,8 M ⁰ _{Rk,s} [Nm]	30	60	105	266	519	898	1331	1799
Stahlklasse 10,9 M ^o _{Rk,s} [Nm]	37	75	131	333	649	1123	1664	2249
Edelstahl A2, A4, HCR -Klasse 50 M ⁰ Rks [Nm]	19	37	66	166	324	561	832	1125
Edelstahl A2, A4, HCR -Klasse 70 M ⁰ Rks [Nm]	26	52	92	233	454	786	1165	1574
Edelstahl A4, HCR- Klasse 80 M ⁰ Rk,s [Nm]	30	60	105	266	519	898	1331	1799
Widerstand bei Zugbelastung Charakteristischer kombinierter Auszugs- und Betonkegelwiderstand für 50 und 100 Jahre	M8	M10	M12	M16	M20	M24	M27	M30
$\tau_{Rk,ucr}$ [N/mm 2] Beton C20/25 Temperaturbereich -40°C/+40°C (T mlp = 24°C)	16.0	12.0	12.0	12.0	9.5	9.5	8,0	8,0
$\tau_{Rk,ucr}$ [N/mm 2] Beton C20/25 Temperaturbereich -40°C/+80°C (T _{mlp} = 50°C)	11.0	8.5	8.5	8.5	7.0	7.0	6,0	6,0
$\tau_{Rk,uor}$ [N/mm 2] Beton C20/25 Temperaturbereich -40°C/+120°C (T _{mlp} = 72°C)	6,0	4.5	4.5	4.5	4,0	4,0	3,0	3,0
Widerstand bei Zugbelastung Charakteristischer kombinierter Auszugs- und Betonkegelwiderstand für 50 Jahre	M8	M10	M12	M16	M20	M24	M27	M30
τ _{Rk,cr} [N/mm ²] gerissener Beton C20/25 Temperaturbereich -40°C/+40°C (T _{mlp} = 24°C)	-	9.0	9.0	9.0	6.5	-	-	-
τ Rk,cr [N/mm ²] gerissener Beton C20/25 Temperaturbereich -40°C/+80°C (T mlp = 50°C)	-	6.5	6.5	6.5	4.5	-	-	-
$\tau_{Rk,cr}$ [N/mm 2] gerissener Beton C20/25 Temperaturbereich -40°C/+120°C (T $_{mlp}$ = 72°C)	-	3.5	3.5	3.5	2.5	-	-	1
Widerstand bei Zugbelastung Charakteristischer kombinierter Auszugs- und Betonkegelwiderstand für 100 Jahre	M8	M10	M12	M16	M20	M24	M27	M30
τ Rk,cr [N/mm ²] gerissener Beton C20/25 Temperaturbereich -40°C/+40°C (T mlp = 24°C)		8.5	8.5	8,0	5.5			
τ Rk,cr [N/mm 2] gerissener Beton C20/25 Temperaturbereich -40°C/+80°C (T _{mlp} = 50°C)		6,0	6,0	5.5	4,0			
τ Rk,cr [N/mm 2] gerissener Beton C20/25 Temperaturbereich -40°C/+120°C (T mlp = 72°C)		3,0	3,0	3,0	2,0			
Ψ c,uc/ucr [-]				$(\frac{f_{ci}}{20})$	(<u>)</u>) ^{0.3}			
Dauerlastfaktor für Temperaturbereich -40°C / +40°C				0,	72			
Dauerlastfaktor für V^0_{Subs} [-]				0,	74			
Dauerlastfaktor für Temperaturbereich -40°C / +120°C		T	1	0,	75			1
Widerstand bei Zugbelastung Charakteristischer Widerstand für Betonkegel	M8	M10	M12	M16	M20	M24	M27	M30
k ucr,N				1 ⁻	1.0		4	
k cr,N					.7			
C cr,N				1,5 Stu	nden _{evtl}			

S cr,N					3,0	h ef			
Widerstand bei Z Charakteristische (Betonrissbildung	er Widerstand gegen Spaltung	M8	M10	M12	M16	M20	M24	M27	M30
(======================================	wenn h = h _{min}	2,5 Stu	nden _{eff}	2,0	h _{ef}		1,5 Stu	nden _{evtl}	
C _{cr,sp} [mm]	wenn h min < h < 2 h min				interpolie	rter Wert			
	wenn $h \ge 2 h_{min}$					cr,Np			
S cr,sp [mm]				,	2,0 (Cr,sp			
Widerstand für Scharakteristische	cherlasten er Widerstand gegen Ablösen aus Beton	М8	M10	M12	M16	M20	M24	M27	M30
k ₈ [-]					2,0)			
Widerstand für So Charakteristische	cherlasten er Widerstand gegen Betonkantenversagen	М8	M10	M12	M16	M20	M24	M27	M30
l _f [mm]	•		ı	_f = h _{ef} und	≤12 dn om	1		I _f = h _{ef} ul (8 d _{non} mr	1;, 300
Bewegungen unt Zugbelastungen	er Betriebsbedingungen	М8	M10	M12	M16	M20	M24	M27	M30
F unc [kN] für Beton	von C20/25 bis C50/60	9.6	10.8	14.3	23.8	29.6	42.4	40.4	44.4
δ _{0,unc} [mm]		0.30	0.30	0.35	0.35	0.35	0.40	0.40	0.45
δ∞, unc [mm]		,	,		0,0	85		,	,
	hnung von C20/25 bis C50/60	_	9,5	14,3	21,4	23,8	_	_	_
$\delta_{0,cr}$ [mm]	-	_	0.50	0,50	0.70	0,60	_	_	_
$\delta_{\infty, cr}$ [mm]			-		85	-,	_		
	er Betriebsbedingungen	M8	M10	M12	M16	M20	M24	M27	M30
F unc / cr [kN] für Bet	on von C20/25 bis C50/60	3.7	5.8	8.4	15.7	24.5	35.3	45,5	55,6
$\delta_{0,unc/cr}$ [mm]					2,0	00		- , -	,-
δ∞, unc / cr [mm]						00			

UNERLÄSSLICHE EIGENSCHAFTE	N	LEISTUN	G GEMÄSS	ETA-09/01	40					
Installationsparameter		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
d [mm]		8	10	12	14	16	20	25	28	32
d ₀ [mm]		10*-12	12*-14	14*-16	18	20	25	30	35	40
h 1 [mm]				MA		h _{ef} + 5 mm mm; ≥ 100 i		id 1		
h _{min} [mm] S _{min} [mm]		40	50	60	75	mm; ≥ 100 75	90	115	120	140
C min [mm]		35	40	45	50	50	55	60	75	80
γ _{Inst} [-] Kategorie I1		- 00		10	- 00	1,00				
γ _{Inst} [-] Kategorie I2						1.20				
Widerstand bei Zugbelastung Charakteristische Widerstandsseit Stahl	e aus	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
N _{Rk,s} [kN]						Asxfuk				
A s [mm ²]		50	79	113	154	201	314	491	616	804
Widerstand bei Zugbelastung Charakteristischer kombinierter Au und Betonkegelwiderstand für 50 u Jahre		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
τ _{Rk,ucr} [N/mm ²] Beton C20/25 Temperaturbereich -40°C/+40°C (T _m	_{nlp} = 24°C)	14.0	13.0	13.0	12.0	10.0	9.5	9.5	8.5	7.5
τ Rk,ucr [N/mm ²] Beton C20/25 Temperaturbereich -40°C/+80°C (T m	_{nlp} = 50°C)	10.0	9.5	9.0	9.0	7.5	7.0	7.0	6,0	5.5
τ _{Rk,ucr} [N/mm ²] Beton C20/25 Temperaturbereich -40°C/+120°C (T 72°C)	mlp =	5.5	5,0	5,0	5,0	4,0	4,0	4,0	3.5	3,0
Ψ c,uc / ucr [-]		$(\frac{f_{ck}}{20})^{0.3}$								
Dauerlastfaktor für Temperaturbereich -40°C / +40°C					0,72					
Dauerlastfaktor für Temperaturbereich -40°C / +80°C Dauerlastfaktor für	$\begin{array}{c} \psi^0_{\text{Sus-}} \\ \psi^0_{\text{sus,100}} \\ \text{[-]} \end{array}$					0,74				
Temperaturbereich -40°C / +120°C			1	T	T	0,75		T	T	ı
Widerstand bei Zugbelastung Charakteristischer Widerstand für Betonkegel		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
k ucr,N						11.0				
C cr,N					1	,5 Stunden e	eff			
S cr,N						3,0 h ef				
Widerstand bei Zugbelastung Charakteristischer Widerstand geg Spaltung (Betonrissbildung)	en	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
	wenn h = h _{min}	2,5 Stu	ınden _{eff}		2,0 h _{ef}			1,5 Stu	inden eff	
C _{cr,sp} [mm]	wenn h min < h < 2 h min				inte	erpolierter W	/ert			
	wenn h					C _{cr,Np}				
0 1	\geq 2 h min									
S _{cr,sp} [mm] Widerstand für Scherlasten			1	1		2,0 C _{cr,sp}			1	
Charakteristischer Widerstand auf Stahlseite ohne Hebelarm	der	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
V _{Rk,s} [kN]					(),5x A s x f u	K			
k 7			1	I	ı	1,0		I	I	1
Widerstand für Scherlasten Widerstand auf der Stahlseite mit H		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Charakteristisches Biegemoment M ⁰	_{Rk,s} [Nm]	50	98	170	1, 269	2 x Wel x Fu		1524	0155	204
Elastizitätsmodul W el [mm 3] Widerstand für Scherlasten		ου	98	170	209	402	785	1534	2155	3217
Widerstand für Scherlasten Widerstand gegen Ablösen aus Be	ton	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32

k 8[-]					2,0				
Widerstand für Scherlasten Charakteristischer Widerstand gegen Betonkantenversagen	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
I _f [mm]			I _f = h _{ef} un	$d \leq 12 d_{nom}$			I _f =h _{ef} un	d ≤max (8 c mm)	1 nom;, 300

HARMONISIERTE TECHNISCHE SPEZIFIKA	ATION: EAD	330499-02	-0601						
UNERLÄSSLICHE EIGENSCHAFTEN	LEISTUNG	G GEMÄSS	ETA-09/014	0					
Bewegungen unter Betriebsbedingungen Zugbelastungen	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
F unc [kN] für Beton von C20/25 bis C50/60	10.1	13.6	17.2	20.1	23.9	41.2	53.3	64.1	67,3
δ _{0,unc} [mm]	0,33	0,33	0,40	0,41	0,42	0,45	0,45	0,47	0,48
$\delta_{\infty,\text{unc}}$ [mm]					0,85				
Bewegungen unter Betriebsbedingungen Scherlasten	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
F unc/cr [kN] für Beton von C20/25 bis C50/60	13.2	20.6	29.6	40.3	52,7	82,3	128,6	161,3	210.6
δ 0,unc/cr[mm]					2,00				
$\delta_{\infty,\text{unc}/\text{cr}}[\text{mm}]$		3,00							

^{*}Perforation mit reduziertem Durchmesser

UNERLÄSSLICHE EIGENSCHAFTEN	LEISTUNG GEMÄSS ETA-0	09/0140			
Widerstand bei Zugbelastung Charakteristischer Widerstand auf der Stahlseite (Gewindestangen der Klasse 10.9 sind nicht für die seismische Kategorie C1 geeignet)	M12	M12 M16			
N _{Rk,s,C1} [kN]		1,0 x N _{Rk,s}			
Widerstand bei Zugbelastung Charakteristischer kombinierter Auszugs- und Betonkegelwiderstand	M12	M16	M20		
τ _{Rk,C1} [N/mm ²] Beton C20/25 Temperaturbereich -40°C/+40°C (T _{mlp} = 24°C)	4.2	3.7	3.7		
τ _{Rk,C1} [N/mm ²] Beton C20/25 Temperaturbereich -40°C/+80°C (T _{mlp} = 50°C)	3,0	2.7	2.7		
τ _{Rk,C1} [N/mm ²] Beton C20/25 Temperaturbereich -40°C/+120°C (T _{mlp} = 72°C)	1.6	1.4	1.4		
ψ c,cr C30/37 [-]		1,00			
ψ c,cr C40/50 [-]		1,00			
ψ c,cr C50/60 [-]		1,00			
γ _{Inst} [-] Kategorie I1 γ _{Inst} [-] Kategorie I2		1,0 1,2			
y inst [-] Nategorie 12 Widerstand für Scherlasten		1,2			
Charakteristischer Widerstand auf der Stahlseite ohne Hebelarm (Gewindestangen der Klasse 10.9 sind nicht für die seismische Kategorie C1 geeignet)	M12	M16	M20		
V _{Rk,s,C1} [kN]		0,7 x V ⁰ Rk,s			
Lochfüllfaktor	M12	M16	M20		
αLücke [-]	0,5 (1,0) 2)				

²⁾ Wert in Klammern gilt für den Fall, dass kein Loch-Schrauben-Spiel vorhanden ist

UNERLÄSSLICHE EIGENSCHAFTEN	LEISTUNG GEMÄSS ETA-09/0140						
Widerstand bei Zugbelastung Charakteristischer Widerstand auf der Stahlseite (Gewindestangen der Klasse 10.9 sind nicht für die seismische Kategorie C2 geeignet)	M12	M16					
$N_{Rk,s,C2}[kN]$	1,0 x N _{Rk,s}						
Widerstand bei Zugbelastung Charakteristischer kombinierter Auszugs- und Betonkegelwiderstand für 50 und 100 Jahre	M12	M16					
τ _{Rk,C 2} [N/mm ²] Beton C20/25 Temperaturbereich -40°C/+40°C (T _{mlp} = 24°C)	1.6	1.7					
$\tau_{Rk,C2}$ [N/mm 2] Beton C20/25 Temperaturbereich -40°C/+80°C (T $_{mlp}$ = 50°C)	1,2	1,2					
τ _{Rk,C 2} [N/mm ²] Beton C20/25 Temperaturbereich -40°C/+120°C (T _{mlp} = 72°C)	0,6	0,7					
ψ c,cr C30/37 [-]	1,1	00					
ψ c,cr C40/50 [-]	1,(
ψ c,cr C50/60 [-]	1,0						
γ Inst [-] Kategorie I1		,0					
γ _{Inst} [-] Kategorie I2 Widerstand für Scherlasten	1	,2					
Charakteristischer Widerstand auf der Stahlseite ohne Hebelarm (Gewindestangen der Klasse 10.9 sind nicht für die seismische Kategorie C2 geeignet)	M12	M16					
V Rk,s ,C2 [kN]	0,53 x V ⁰ _{Rk,s}	0,46 x V ⁰ Rk,s					
Um 5	>19 %						
Lochfüllfaktor	M12	M16					
αLücke [-]	0.5 (1,0) ²⁾					

²⁾ Wert in Klammern gilt für den Fall, dass kein Loch-Schrauben-Spiel vorhanden ist

HARMONISIERTE TECHNISCHE SPEZIFIKATION: EAD 330499-02-0601 QUALIFIKATION FÜR SEISMISCHE EINLAGEN KATEGORIE C2					
UNERLÄSSLICHE EIGENSCHAFTEN LEISTUNG GEMÄSS ETA-09/0140					
Zug- und Schubverschiebungen für die seismische Kategorie C2	M12	M16			
Bewegungen unter Betriebsbedingungen Zuglasten δ _{N,seis} (DLS [mm]	0,20	0,23			
Bewegungen unter ultimativen Bedingungen Zuglasten δ _{N,seis} (ULS) [mm]	0,33	1.04			
Bewegungen unter Betriebsbedingungen Scherlast δv,seis (DLS) [mm]	2.01	0,70			
Bewegungen unter ultimativen Bedingungen Scherlast δν,seis (ULS) [mm]	4,68	2.12			

HARMONISIERTE TECHNISCHE SPEZIFIKATION: EAD 330499-02-0601					
UNERLÄSSLICHE EIGENSCHAFTEN	LEISTUNG				
Reaktion auf Feuer	Bei der endgültigen Anwendung sind die Schichtdicken von Die Dicke des Produkts beträgt ca. 1 ÷ 2 mm und die meisten dieser Produkte werden in die Klasse A1 eingestuft Entscheidung ES GIBT 96/603/EG. daher kann man davon ausgehen dass das Material Bindemittel (Harz synthetisch oder eine Mischung daraus Kunstharz und zementös) in Verbindung mit dem Metallanker im Einsatz endgültige Bewerbung, Nicht leistet irgendeinen Beitrag zur Entstehung von Feuer oder Zu ein Feuer voll entwickelt und das ist nicht der Fall Kein Einfluss auf die Gefahr der Rauchentwicklung.				

HARMONISIERTE TECHNISCHE SPEZIFIKATION: EAD 330499-02-0601				
UNERLÄSSLICHE EIGENSCHAFTEN LEISTUNG				
Feuerresistent	Siehe Grafik und Tabellen unten			

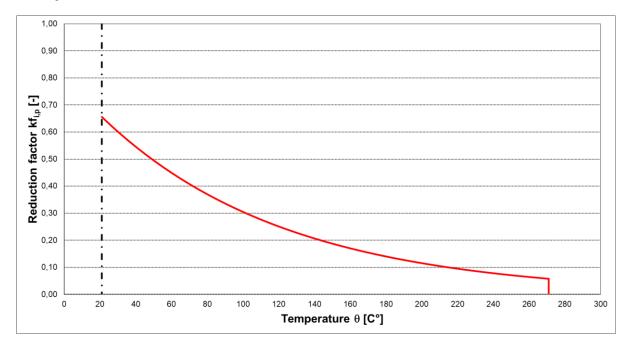
Charakteristische Verbundfestigkeit eines einzelnen Verbindungselements τ_{Rk} , fi, p (θ) für Betonfestigkeitsklassen von C20/25 bis C50/60 mit allen Bohrverfahren unter Brandbedingungen für 50 und 100 Jahre

Die charakteristische Haftfestigkeit eines einzelnen Verbindungselements unter Brandbedingungen $\tau_{Rk,fi,p}$ für eine gegebene Temperatur (θ) muss mit den folgenden Gleichungen berechnet werden

$$\tau_{Rk,fi,p}(\theta) = k_{fi,p}(\theta) * \tau_{Rk,cr,C20/25}$$

$$\tau_{Rk,fi,p}(\theta) = k_{fi,p}(\theta) * \tau_{Rk,cr,100,C20/25}$$

Wo


$$\begin{split} &if \ \theta \leq \theta_{max} \quad k_{fi,p}(\theta) = \ k_{fi,p}(\theta) = 0,8049 \cdot e^{-0,0097 \cdot \theta} \leq 1,0 \\ &if \ \theta > \theta_{max} \quad k_{fi,p}(\theta) = \ k_{fi,p}(\theta) = 0 \end{split}$$

$$\theta_{\text{max}} = 271^{\circ}\text{C}$$

 $\tau_{Rk,fi,p}$ = charakteristische Verbundfestigkeit für gerissenen Beton unter Feuereinwirkung bei einer bestimmten Temperatur (θ) $k_{fi,p}(\theta)$ = Reduktionsfaktor für die Verbundfestigkeit bei Brandeinwirkung

 $\tau_{Rk,cr,C}$ 20/25 = charakteristische Verbundfestigkeit für gerissenen Beton für die Betonfestigkeitsklasse C20/25 für eine Nutzungsdauer von 50 Jahren gemäß Tabelle C3.

 $\tau_{Rk,cr,100,C20/25}$ = charakteristische Verbundfestigkeit für gerissenen Beton für die Betonfestigkeitsklasse C20/25 für eine Nutzungsdauer von 100 Jahren gemäß Tabelle C3.

Charakteristischer Widerstand unter Zuglast bei Stahlversagen im Brandfall – Gewindestange

Durchmesser			M10	M12	M16	M20
Bruch auf der Stahlseite						
	N Rk,s ,fi (30)	[kN]	0,87	1,70	3.14	4,90
Ctabildage E 0 00	N Rk,s ,fi (60)	[kN]	0,75	1.28	2.36	3,68
Stahlklasse 5,8 - 8,8	N Rk,s ,fi (90)	[kN]	0,58	1.11	2.04	3.19
	N Rk,s ,fi (120)	[kN]	0,46	0,85	1,57	2,45
	N Rk,s ,fi (30)	[kN]	1,45	2,55	4.71	7.35
Edelstahl A4	N Rk,s ,fi (60)	[kN]	1.16	2.13	3,93	6.13
	N Rk,s ,fi (90)	[kN]	0,93	1,70	3.14	4,90
	N Rk,s ,fi (120)	[kN]	0,81	1,36	2.51	3,92

Charakteristischer Widerstand unter Scherlast mit und ohne Hebelarm bei Stahlversagen im Brandfall – Gewindestange

Durchmesser		M10	M12	M16	M20	
Bruch auf der Stahlseite						
	V Rk,s ,fi (30)	[kN]	0,87	1,70	3.14	4,90
Stahlklasse 5,8 - 8,8	V Rk,s ,fi (60)	[kN]	0,75	1.28	2.36	3,68
Statiiklasse 5,0 - 0,0	V Rk,s ,fi (90)	[kN]	0,58	1.11	2.04	3.19
	V Rk,s ,fi (120)	[kN]	0,46	0,85	1,57	2,45
	V Rk,s ,fi (30)	[kN]	1,45	2,55	4.71	7.35
Edolotobl A4	V Rk,s ,fi (60)	[kN]	1.16	2.13	3,93	6.13
Edelstahl A4	V Rk,s ,fi (90)	[kN]	0,93	1,70	3.14	4,90
	V Rk,s ,fi (120)	[kN]	0,81	1,36	2.51	3,92
	M Rk,s ,fi (30)	[Nm]	1,1	2,7	6,7	13.0
Stahlklasse 5,8 - 8,8	M Rk,s ,fi (60)	[Nm]	1,0	2,0	5,0	9,7
Statiikiasse 3,0 - 0,0	M Rk,s ,fi (90)	[Nm]	0,7	1,7	4,3	8,4
	M Rk,s ,fi (120)	[Nm]	0,6	1.3	3.3	6.5
	M Rk,s ,fi (30)	[Nm]	1.9	4,0	10.0	19.5
Edelstahl A4	M Rk,s ,fi (60)	[Nm]	1.5	3.3	8.3	16.2
Lucisiaili A4	M Rk,s ,fi (90)	[Nm]	1,2	2.7	6.7	13.0
	M Rk,s ,fi (120)	[Nm]	1,0	2.1	5.3	10.4

Charakteristischer Widerstand unter Zuglast bei Bruch des Betonkegels und Spaltung im Brandfall – Gewindestange

Durchmesser			M10	M12	M16	M20
Versagen des Betonkegels						
	N 0 Rk,c ,fi (30)	[kN]		_		
Stahlklasse 5,8 - 8,8	N 0 Rk,c ,fi (60)	[kN]	$\frac{h_{ef}}{200} * N_{Rk,c}^0 \le N_{Rk,c}^0$			
Edelstahl A4	N 0 Rk,c ,fi (90)	[kN]	200			
23030111711	N 0 Rk,c ,fi (120)	[kN]		$0.8*\frac{h_{ef}}{200}*N$	$N_{Rk,c}^0 \leq N_{Rk,c}^0$	
Charakteristischer Radstand	S cr,N ,fi	[mm]		4h	ef	
Charakteristischer Abstand vom Rand	C cr,N ,fi	[mm]		2h	ef	

Charakteristischer Widerstand unter Scherlast bei Durchbruchversagen im Brandfall – Gewindestange

Durchmesser			M10	M12	M16	M20
Pryout Versagen						
	V Rk,cp ,fi (30)	[kN]				
Stahlklasse 5,8 - 8,8	V Rk,cp ,fi (60)	[kN]	k8 x N _{Rk,c} ,fi (90)			
Edelstahl A4	V Rk,cp ,fi (90)	[kN]				
	V Rk,cp ,fi (120)	[kN]		k8 x N _R	k,c ,fi (120)	

Charakteristischer Widerstand unter Scherlast bei Betonkantenversagen im Brandfall – Gewindestange

Durchmesser			M10	M12	M16	M20
Versagen der Betonkante						
	V Rk,c ,fi (30)	[Nm]				
Stahlklasse 5,8 - 8,8	V Rk,c ,fi (60)	[Nm]	0,25 V _{0 Rk,c}			
Edelstahl A4	V Rk,c ,fi (90)	[Nm]				
	V Rk,c ,fi (120)	[Nm]		0,20 V	/ _{0 Rk,c}	

LEGENDE DER SY	/MBOLE
D	Durchmesser des Bolzens oder Gewindeteils
d o	Lochdurchmesser
Ich werde es	Durchmesser des Lochs im zu befestigenden Objekt
reparieren	
h _{ef}	Effektive Verankerungstiefe
h ₁	Lochtiefe
Std . min	Mindestdicke des Betonträgers
TFix	Anzugsdrehmoment
sich nicht beheben	Fixierbare Dicke
S min	Mindestradstand
C min	Mindestabstand zu den Kanten
N _{Rk,s}	Charakteristische Zugfestigkeit auf der Stahlseite bei statischer Belastung
N _{Rk,s,C1}	Charakteristische Zugfestigkeit auf der Stahlseite für Erdbebenkategorie C1
N _{Rk,s,C2}	Charakteristische Zugfestigkeit auf der Stahlseite für Erdbebenkategorie C2
$V_{Rk,s}$	Charakteristischer Scherwiderstand auf der Stahlseite bei statischer Belastung
V _{Rk,s,C1}	Charakteristischer Scherwiderstand auf der Stahlseite für Erdbebenkategorie C1
V _{Rk,s,C2}	Charakteristischer Schubwiderstand auf der Stahlseite für Erdbebenkategorie C2
τΡκ	Charakteristische Haftung in ungerissenem (uncr), gerissenem (cr) Beton, seismische Kategorie C1 und C2
Auf der Linken	Querschnittsfläche
Um ₅	Bruchdehnung
$M^{0}_{Rk,s}$	Charakteristisches Biegemoment
Naja	Elastischer Widerstandsmodul
αLücke	Lochfüllfaktor
k ₇	Duktilitätsfaktor
k 8	Koeffizient für die Betonuntergrabung
N _{Rk}	Charakteristischer Widerstand gegen Auszug und Betonkegelbildung bei Einzelverankerung
γ Inst	Teilsicherheitsbeiwert bezogen auf den Einbau des Ankers
S _{cr,Np}	Achsabstand zur Sicherstellung der Übertragung der charakteristischen Auszugslast einer Einzelverankerung
C cr,Np	Abstand vom Rand zur Sicherstellung der Übertragung der charakteristischen Auszugslast für einen einzelnen Anker
k _{uncr,N}	Beiwert für ungerissenen Beton
k _{cr,N}	Koeffizient für gerissenen Beton
S _{cr,N}	Achsabstand zur Sicherstellung der Übertragung der charakteristischen Last zur Bildung des Betonkegels für eine Einzelverankerung
C _{cr,N}	Abstand vom Rand, um die Übertragung der charakteristischen Last für die Bildung des Betonkegels für eine Einzelverankerung sicherzustellen
S _{cr,sp}	Achsabstand zur Sicherstellung der Übertragung der charakteristischen Belastung beim Betonspalten für eine Einzelverankerung
C cr,sp	Abstand vom Rand, um die Übertragung der charakteristischen Last beim Betonspalten für eine einzelne Verankerung zu gewährleisten
Ψ c,ucr	Erhöhungsfaktor für ungerissene Betonklassen
Ψ c,α	Erhöhungsfaktor für gerissene Betonklassen
I _f	Effektive Länge
F	Gebrauchslast in ungerissenem Beton (ucr) oder gerissenem Beton (cr)
δ 0	Kurzzeitige Verschiebung unter Betriebslast in ungerissenem Beton (uncr) oder gerissenem Beton (cr)
δ_{∞}	Langzeitverschiebung unter Betriebslast in ungerissenem Beton (uncr) oder gerissenem Beton (cr)
NPA	Leistung nicht deklariert

REACH-Verordnung Nr. 1907/2006

Geschätzter Kunde,

Wir informieren Sie darüber, dass unser Unternehmen innerhalb der Lieferkette der REACH-Verordnung als nachgeschalteter Anwender von Stoffen und Zubereitungen eingestuft ist.

Bezüglich des in Punkt 1 definierten Produkts möchten wir bestätigen, dass es derzeit keine Stoffe enthält, die als SVHC gelten, basierend auf der veröffentlichten Liste unter:

http://echa.europa.eu/chem_data/candidate_list_table_en.asp .

Das Produktsicherheitsdatenblatt kann bei unserem technischen Büro angefordert werden: tek@bossong.com oder <a href="tek@bossong.

10. Die Leistung des in den Punkten 1 und 2 genannten Produkts entspricht der erklärten Leistung gemäß Punkt 9. Für die Erstellung dieser Leistungserklärung ist ausschließlich der in Punkt 4 genannte Hersteller verantwortlich. Unterzeichnet für und im Namen von:

Name und Funktion	Ort und Datum der Veröffentlichung	Unterschrift
Andrea Taddei Direktor Allgemein	Grassobbio (Bg) – Italien 21.07.2025	Andrew John.

Hinweis: Diese DoP ersetzt die vorherige Version vom 23.05.2019.